Synthesis and spectroscopic characterization of diethyltin(IV) derivatives of dipeptides: Crystal and molecular structure of diethyltin glycyltyrosinate‡

Michael Vornefeld,* Friedo Huber,* Hans Preut,* Giuseppe Ruisi† and Renato Barbieri†

* Universität Dortmund, Lehrstuhl fur Anorganische Chemie II, Postfach 500 500, D-4600 Dortmund 50, Federal Republic of Germany and † Università di Palermo, Dipartimento di Chimica Inorganica, 26 via Archirafi, I-90123 Palermo, Italy

Dipeptide complexes of the diethyltin(IV) moiety, Et₂SnL, have been synthesized, H₂L being glycylglycine (H2GlyGly), glycylalanine (H2GlyAla), alanylalanine (H₂AlaAla), glycylvaline (H₂GlyVal), valylvaline (H₂ValVal), glycylmethionine (H₂GlyMet), glycyltyrosine (H₂GlyTyr). crystal and molecular structure of the complex Et₂SnGlyTyr has been determined by singlecrystal X-ray diffraction. It consists of monomeric units, with the tin atom having a considerably distorted trigonal bipyramidal environment. The dipeptide acts as a tridentate ligand bonding the tin of the C₂Sn fragment (equatorial carbon atoms) with the peptide nitrogen atom (equatorial) and axial (monodentate) carboxyl oxygen and amino nitrogen atoms, into a monomeric unit. Bond lengths and angles are reported. Infrared spectroscopic data show the occurrence of monodentate carboxyl in all solid compounds, as well as in methanol solutions of some representative complexes. 119Sn Mössbauer spectroscopic data, and their rationalization through point-charge model (literal version) calculations of the parameter nuclear quadrupole splitting (ΔE) confirm the general occurrence of trigonal bipyramidal structures of the Et, SnGlyTyr type, in the solid state, and give evidence of variations of the C-Sn-C angle in the individual Et₂SnL species. Monomers occur in CH₃OH solution as suggested by osmometric measurements. 13C and 119Sn NMR spectroscopic data in CD₃OD show the persistence of the solid-state structures also in the solution phase, where the order of magnitude of the C-Sn-C angles, as estimated from the coupling constants

Keywords: Diorganotin dipeptides, X-ray structure determination, ¹³C and ¹¹⁹Sn NMR, IR, Mössbauer

INTRODUCTION

A series of diorganotin derivatives of dipeptides $(R_2SnL \text{ where } H_2L = \text{dipeptide})$ have been found to exhibit antileukemic activity. 1-3 The molecular structure of a number of these compounds, as determined by X-ray diffraction methods, is generally characterized by tridentate bis-chelating ligands L^{2-} with two carbon atoms (of the R_2Sn moiety) and N_{peptide} in the equatorial plane, and O_{carboxvlate} and N_{amino} in the apical positions, of a distorted trigonal bipyramidal polyhedron around tin. 4-7 Only in (Et₂SnGlyHis)₂·MeOH has one of tin sites been found the two hexacoordinated.8 In order to extend knowledge on these structure-biological activity relationships, it seemed worthwhile to study diethyltin compounds Et₂SnL, which show appreciable anti-leukemic activity.^{9, 10} In this paper we report on the synthesis and structure of diethyltin derivatives of various types of dipeptides.

EXPERIMENTAL

The dipeptides were a gift from Degussa, Frankfurt, Germany. Et₂SnO was prepared from Et₂SnBr₂ and KOH in methanol; the product was

 $^{|^{1}}J(^{119}Sn,^{13}C)|$, corresponds to that shown by Et₂SnGlyTyr in the solid state. ¹¹⁹Sn Mössbauer parameters of Et₂SnGlyGly in frozen CH₃OH solution are consistent with the assumptions from the NMR studies.

[‡] This paper is dedicated to Prof. Dr. Peter Sartori with appreciation.

^{*} Further X-ray structure determination data is available from the authors.

separated by centrifuging and was dried in vacuum after washing with MeOH. Solvents were commercial products and were dried as usual.

The new compounds listed in Table 1 were synthesized as follows.

Method I

Et₂SnO (2 mmol) and 2 mmol of the appropriate dipeptide H₂L in 30-50 cm³ of dry methanol were reacted under reflux for 4 h; 2,2-dimethoxy-propane was added to the reaction mixture to remove water of neutralization. The products, after reducing the volume of the clear reaction mixture *in vacuo* to about 5 cm³, were precipitated as white solids by adding petroleum ether (40-60 °C) and diethyl ether 1:1 v/v.

Method II

Et₂SnCl₂ (2 mmol) was added to a solution obtained from 2 mmol of H₂L and 4 mmol of NaOMe in 30 cm³ of methanol. After stirring for 0.5 h at room temperature, refluxing for 2 h, and separation of NaCl, the product was precipitated as in Method I, washed with diethyl ether and recrystallized several times from ethanol to remove NaCl.

Elemental analyses were carried out with an Elemental analyzer 1106 Carlo Erba, Milano (Italy). Melting points were measured in open capillaries and are uncorrected. Molecular weights were determined osmometrically in anhydrous methanol. The IR spectra were recorded on a Perkin-Elmer grating spectrometer PE 580B in KBr and CD₃OD. ¹³C and ¹¹⁹Sn NMR spectra were recorded in CD₃OD on a Bruker AM300 and chemical shifts were measured in ppm downfield from internal TMS and external Me₄Sn references, respectively. ¹¹⁹Sn Mössbauer spectra were recorded by a Mössbauer spectrometer consisting of: (1) a 4096-channel analyzer (Master 4000, Laben, Milano); (2) function generator, driving unit and related electronics (Takes, Ponteranica, Bergamo); (3) linear velocity transducer (Halder, München); (4) scintillation and proportional counters (Harshaw, De Meern, The Netherlands, and Reuter-Stokes, Cleveland, respectively); (5) Mössbauer sources, Ca¹¹⁹SnO₃ and ⁵⁷Fe(⁵⁷Co), 10-1 mCi (Radiochemical Centre, Amersham, UK).

Velocity calibration has been effected periodically by means of six-line spectra of iron metal; zero-point calibration has been obtained from room-temperature CaSnO3-CaSnO3 spectra. The source, at room temperature, was moving with linear velocity, constant acceleration, in a triangular waveform. The spectra of solid-state organotin complexes were taken at 77.3 K in liquidnitrogen cryostats (AERE Harwell, Didcot, UK). The measurements on frozen solutions were carried out on $1.0-2.0 \,\mathrm{cm^3}$ of $36-100 \,\mathrm{mmol \, dm^{-3}}$ solutions in polythene holders, according to a procedure described elsewhere. 11 Data reduction was effected conventionally by fitting the experipoints with Laurentzian data lineshapes. 11 Single crystals of Et₂SnGlyTyr were obtained by crystallization from methanol after addition of Et₂O and petroleum ether (40-60 °C). A crystal of dimensions 0.22 mm × $0.26 \,\mathrm{mm} \times 0.22 \,\mathrm{mm}$ mounted on a glass fibre was used to obtain cell data, and subsequently for intensity measurements. Crystal data were as follows: $M_{\tau} = 413.04$, a = 11.492(6), b = 11.618(6), $c = 12.786(10) \text{ Å}, \quad V = 1707(2) \text{ Å}^3, \quad Z = 4, \quad D_x = 1707(2) \text{ Å}^3$ 1.607 Mg m⁻³, space group = $P2_12_12_1$. intensities of 6550 $(1.5^{\circ} \le \theta \le 25.0^{\circ}; 0 \le h \le 13;$ $-13 \le k \le 13$; $-15 \le l \le 15$) reflections were measured on a Nonius CAD-4 diffractometer, with graphite-monochromated MoK α radiation, λ = $0.71073 \text{ Å}, \mu = 1.52 \text{ mm}^{-1}, T = 291(1) \text{ K}; F(000) =$ 832, $\omega/2\theta$ scans, scan speed 1.5–5.0° min⁻¹ in θ . Lattice parameters are taken from a symmetryconstrained least-squares fit with 25 reflections up to $2\theta = 25.1$. The data were corrected for Lorentz polarization effects and absorption effects via ψ scans. After averaging equivalent reflections, 3008 unique reflections ($\vec{R}_{int} = 0.016$) remained from which 2806 reflections with $F \ge 4.0 \, \sigma(F)$ were used for the structure determination via a Patterson function, ΔF syntheses and full-matrix least-squares refinements with anisotropic temperature factors for all non-H atoms and a common isotropic temperature factor for hydrogen atoms, which were placed in geometrically calculated positions (C-H 0.96 Å). Complex neutral atom scattering factors were taken from Ref. 12, refinement on F with 2806 reflections and 201 refined parameters converged at R = 0.019: $w = 1.0/[\sigma^2(F) + (0.0005 F^2)]; S = 0.89, wR = 0.021,$ $(\Delta/\sigma)_{\text{max}} = 0.01$; there was no extinction correction. An η -refinement¹³ [$\eta = 1.06(5)$] confirmed the proposed chirality. The largest peak in the final ΔF map was $\pm 0.4(2)$ e Å⁻³. The following programs were used: Enraf-Nonius Structure Determination Package, 14 PARST, 15 SHELXTL PLUS¹⁶ and PCK83.¹⁷

RESULTS AND DISCUSSION

The diethyltin derivatives of the dipeptides (Et₂SnL; 1, 4, 6 and 7) listed in Table 1 were prepared by reaction of Et₂SnO with the appropriate dipeptides H₂L (=H₂GlyVal, H₂GlyGly) in methanol in a 1:1 molar ratio. The other compounds, and 1 and 4 as well, were obtained from Et₂SnCl₂ and Na₂L under similar conditions. prepare Attempts to 1:2 compounds [Et₂Sn(HL)₂] by reaction of Et₂SnO and H₂L or by reaction of Et₂SnCl₂ and NaHL failed. In both cases the 1:1 compounds 1 and 4, respectively, were obtained; the latter reaction proceeds according to Eqn [1].

$$Et_2SnCl_2 + 2 NaHL = Et_2SnL + H_2L + 2 NaCl$$
[1]

Compounds 1-7 are soluble in methanol, ethanol and DMSO but insoluble in diethyl ether, acetone and chloroform. According to molecular weight measurements the complexes are monomeric in methanol (Table 1).

In the IR spectra of the compounds (Table 2), vibrations associated with $v(NH_3^+)$ of the H_2L are

missing, which implies the bonding of the Et₂Sn moiety to the carboxylate group. The values of $\Delta v = v_{as}(COO) - v_{sym}(COO)$ are in the range 200-230 cm⁻¹ (Table 2), indicating that the carboxylate groups act as monodentate; bridging COO groups, which would afford a Δv value <200 cm⁻¹, ¹⁸ are thereby excluded. The compariof $v(NH_{amino})$ of the sodium salts (3315-3410 cm⁻¹) or of matrix isolated amino acids (HGly: 3414 cm^{-1})¹⁹ with those of the solid compounds **1–7** (3120–3260 cm⁻¹; Table 2) shows a distinct shift to lower frequencies for the latter compounds, indicating the coordination of the amino group to the central tin atom. 20 The strong band $v(NH_{pept})$ present in the IR spectra of the acids H_2L (3240–3320 cm⁻¹) is missing in the spectra of the complexes 1-7, suggesting that the Et₂Sn moiety is bonded to N_{peptide}. This corresponds to the shift of v(CO_{pent}) of 1 and 4-7 with respect to the corresponding disodium salts (1665–1690 cm⁻¹) to lower frequencies in the range $1642-1650 \text{ cm}^{-1}$ (Table 2). In 2 and 3, v(CO_{pept}) is shifted, in comparison with 1 and 4-7. markedly lower to frequencies (1632–1625 cm⁻¹; Table 2), indicating additional $CO_{pent} \rightarrow Sn$ coordination in the solid state.

Table 1 Analytical data for diethyltin derivatives of dipeptides Et₂SnL

		Analysis (%): Found (Calcd)			Mol. wt ^c			
Compound ^a		Method of synthesis ^b	Yield (%)	N	С	Н	M.p. (°C)	Found (Calcd)
1	Et ₂ Sr ₂ GlyGly	I	65	8.9	30.2	5.2	113	306 (307)
		II	92	9.1 (9.1)	31.3 (31.3)	5.3 (5.2)		
2	Et ₂ SnGlyAla	II	89	8.7 (8.7)	34.0 (33.7)	5.9 (5.7)	127	322 (343)
3	Et ₂ SnAlaAla	II	87	7.8 (8.4)	35.5 (35.8)	6.2 (6.0)	98	336 (335)
4	Et ₂ SnGlyVal	I	58	8.0	38.4	6.3	102	350 (348)
		II	95	8.0 (8.0)	37.5 (37.9)	6.4 (6.3)		
5	Et ₂ SnValVal	II	70	6.9 (7.2)	42.3 (43.0)	6.9 (7.2)	75	392 (395)
6	Et ₂ SnGlyMet	I	84	7.0 (7.3)	33.2 (34.7)	6.2 (5.8)	60 ^d	378 (381)
7	Et ₂ SnGlyTyr	I	94	6.4 (6.8)	43.9 (43.6)	5.2 (5.4)	178	410 (413)

^aAbbreviations: HGly, NH₂CH₂COOH; HAla, CH₃CH(NH₂)COOH; HVal, (CH₃)₂CHCH(NH₂)COOH; HMet, CH₃SCH₂CH₂CH(NH₂)COOH; HTyr, HOC₆H₄CH₂CH(NH₂)COOH. ^bSee the Experimental section. ^cMolecular weight in methanol. ^dDecomposition.

Table 2 Characteristic IR vibrations of Et2SnL^a (cm⁻¹)

Co	ompound	$\nu(NH_{amino})$	$\nu({\rm CO}_{pept})$	$v_a(COO)$	$v_{sym}(COO)$	Δv ^b
1	Et ₂ SnGlyGly	3120 br 3240 s, br 3280 sh	1645 s	1625 vs	1396 vs	229
	In CD ₃ OD		1669 s, br	1628 s, br	1400 s, br	228
2	Et ₂ SnGlyAla	3125 s, br 3230 s, br	1632 s, br	1610 sh	1400 vs	210
	In CD ₃ OD		1665 s, br	1622 s, br	1400 s, br	222
3	Et ₂ SnÅlaAla	3120 s, br 3210 s, br	1625 s, br	1610 vs	1400 vs	210
	In CD ₃ OD		1672 vs	1615 s, br	1405 s, br	210
4	Et ₂ SnGlyVal	3200 s, br 3180 sh	1650 sh	1630 s, br	1400 vs	230
5	Et ₂ SnValVal	3200 s, br 3260 sh	1643 vs	1602 vs	1390 vs	212
6	Et ₂ SnGlyMet	3120 s, br 3200 s, br	1648 vs	1610 s, br	1408 vs	202
7	Et ₂ SnGlyTyr	3145 s, br 3220 s, br 3360 br, sh ^c	1642 sh	1626 s, br	1396 vs	230
	In CD ₃ OD		1675 vs	1622 s, br	1400 vs	222

^aIn the solid state, or in solution in CD₃ OD where indicated. ^b $\Delta v = v_{as}(COO) - v_{sym}(COO)$. Including v(OH).

The molecular structure of Et₂SnGlyTyr is shown in Fig. 1 and a stereoscopic view of the unit cell in Fig. 2. Atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms are given in Table 3 and bond lengths and angles in Table 4. Full listings of atomic coordinates are available upon request from the authors and are lodged at the Cambridge Data Base, UK.

Et₂SnGlyTyr crystallizes in the space group $P2_12_12_1$. The atoms bound to tin form a distorted trigonal bipyramid with N_{peptide} and two ethyl- $C(\alpha)$ atoms occupying the equatorial positions whereas N_{amino} and O_{carboxylate} are in the apical positions. The bond distances and angles within the two chelate rings are in the same range as in the isostructural compound Me₂SnGlyMet.⁵ The equatorial angle C(6)-Sn-C(8) in Et₂SnGlyTyr, 131.4(2)°, is larger than in other pentacoordinated diorganotin dipeptides 123.8(2)° in Me₂SnGlyMet,⁵ and 117.5(3)° in Ph₂SnGlyGly⁴]; however, intermolecular coordination to tin, e.g. by carboxylate or peptide oxygen, as the cause of the enlargement of the C-Sn-C angle, can be excluded since Sn-O contacts smaller then 3.5 Å are not observed. The distortion of the molecule is evident from the axial angle O(1)-Sn-N(1) of 152.2(1)°. From short N... O distances the presence of hydrogen bonds is inferred. Thus, intermolecular distances N(1) ... O(3) = 2.809(5) Å and O(2) ... O(4) = 2.678 Å are markedly shorter than the sum of the van der Waals radii $(3.11 \text{ Å}).^{21}$

The 13C and 119 Sn NMR spectra of the compounds 1–7 have been recorded in CD₃OD and are given in Table 5. The number of signals in the 13 C NMR spectra corresponds to the number of magnetically non-equivalent carbon atoms. The doublet of α -C atoms of the Et₂Sn group in the spectra of the compounds 2–7 correlates with the different shielding due to the α -C dipeptide ligand, whilst in the spectrum of 1 only one signal for the appropriate carbon atoms can be distinguished.

The occurrence of unique ¹³C signals for δ (CO) and δ (CHR) for the coordinated ligands (Table 5) suggests that the solid-state species exists also in CH₃OH solution in the form of undissociated monomers (*vide supra*), analogous to methanolic Me₂SnGlyGly.³

The coupling constant |¹J(¹¹⁹Sn, ¹³C)| values (608–632 Hz, Table 5) are in the expected range for pentacoordinated²² or hexacoordinated diorganotin chelate complexes (632–977 Hz);²³ tetracoordination would afford lower values (e.g. 365–402 Hz, as found in various dibutyltin(IV) complexes²⁴) and can be safely excluded. The

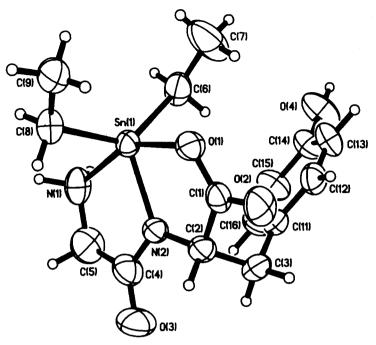
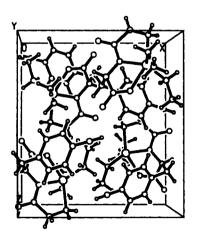



Figure 1 Molecular structure of Et₂SnGlyTyr: view of molecule showing atom numbering scheme.

chemical shift values (¹¹⁹Sn) of **1–6**, ranging from –122.21 to –128.06 ppm, at 37 °C (Table 5) are characteristic of pentacoordinated tin.²⁵ The orders of magnitude of the angles C–Sn–C of the Et₂Sn moieties reported in Table 5, estimated from the coupling constants |¹J(¹¹⁹Sn, ¹³C)|, employing the correlations advanced previously for methyltin derivatives, ^{26,27} are practically coincident, and correspond to the solid-state C–Sn–C value found for the Et₂SnGlyTyr complex (*vide supra*).

The ¹¹⁹Sn Mössbauer parameters of solid-state Et₂SnL complexes (Table 6) seem to indicate the occurrence of two classes of compounds: (i) **1**, **4**, **5**, **6**, $\delta = 1.18-1.20 \,\mathrm{mm \, s^{-1}}$, $\Delta E = 2.46-2.69 \,\mathrm{mm \, s^{-1}}$; (ii) **2**, **3**, **7**, $\delta = 1.26-1.32 \,\mathrm{mm \, s^{-1}}$, $\Delta E = 2.87-3.14 \,\mathrm{mm \, s^{-1}}$. These data suggest an increase of s electron density at the tin nuclei (δ), as well as a larger asymmetry of the electron distribution around tin atoms (ΔE), from class (i) to class (ii). ²⁸ Inasmuch as the narrow linewidths (Γ ; Table 6) obtained for the

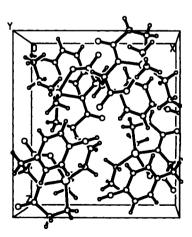


Figure 2 Structure of Et₂SnGlyTyr: stereoscopic view of the unit cell.

Table 3 Atomic coordinates and equivalent isotropic thermal parameters (Å² × 10³) in Et₂SnGlyTyr $U_{cq} = \frac{1}{3}(U_{11} + U_{22} + U_{33})$

 $U_{\rm eq}$ х z y 0.28103(2) 37 0.56678(2)0.82150(2)Sn(1) 0.9863(2)57 N(1)0.2995(3)0.6412(3)39 N(2)0.1251(2)0.6538(2)0.8440(2)44 0.6808(2)O(1)0.1797(2)0.5275(2)59 0.5951(2)O(2)0.0167(2)0.5626(3)80 0.9604(3)O(3)-0.0016(3)0.7309(3)78 O(4)0.4344(3)1.0064(3)0.5905(2)C(1) 0.0808(3)0.5767(3)0.6716(2)40 C(2)0.0410(3)0.6555(3)0.7593(3)42 0.7799(3)0.7174(3)50 C(3)0.0214(3)C(4) 0.0947(4)0.6934(3)0.9381(3)56 76 0.6947(4)1.0175(3)C(5)0.1913(4)60 C(6)0.4111(3)0.6584(4)0.7411(3)C(7)0.6073(6)0.6366(4)106 0.4436(5)C(8)0.2763(4)0.3952(3)0.8784(3)50 0.3019(4)0.7998(3)67 C(9)0.3003(4)C(11)0.1299(3)0.8405(3)0.6831(3)44 C(12)0.1752(3)0.8261(3)0.5827(3)52 C(13)0.2766(4)0.8803(3)0.5505(3)55 0.3338(4)0.9523(3)0.6179(3)54 C(14)C(15)0.2891(4)0.9691(3)0.7180(3)61 C(16) 0.1890(3)0.9134(3)0.7489(3)54

complexes indicate the presence of only one type of tin atom in the structures, the above trends may be rationalized in terms of point-charge model calculations of quadrupole splittings ΔE .²⁸ [For this purpose, the 'literal' point-change model is employed, which accounts for all valence electrons in the tin environment;²⁹ regular trigonal bipyramidal structures are considered (except SnC₂ fragments in the trigonal plane where C-Sn-C angles are allowed to vary, and these are taken as the structural factor dictating the magnitude of ΔE)]. The values of partial nuclear quadrupole splitting (pqs) employed in the calculations are taken from the literature; 30-33 for apical monodentate carboxylate, to correspond with the IR study deduced above, a pqs value $-0.10 \,\mathrm{mm}\,\mathrm{s}^{-1}$ has been employed:³³ ({Alk}^{tbe}= $\{N_{pept}\}^{tbe} = -0.30 \text{ mm s}^{-1};$ -1.13 mm s^{-1} : $\{NH_2\}^{tba} = +0.01 \text{ mm s}^{-1}$.

The results of the calculations are as follows: for class (i), C-Sn-C = 107° (Et₂SnGlyVal) 117° (Et₂SnGlyGly); and for class (ii), C-Sn-C = 124° (Et₂SnGlyTyr) -131° (Et₂SnGlyAla).

The increase of the C-Sn-C angles from (i) to (ii) would provoke a parallel increase of the

percentage s character in the Sn–C bonds, which are then assumed to dictate the s electron density at the tin nuclei as inferred from the magnitude of the Mössbauer parameters δ . 28

It is observed that the bond angles deduced for compounds in class (ii) complexes agree reasonably with the X-ray diffractometry value for C-Sn-C of 131.4° in Et₂SnGlyTyr; the agreement for class (i) complexes is consistently lower. These effects bear no relationship to any steric effects of substituents at C(2) in the amino-acid residues (Fig. 1), nor to the occurrence of potentially coordinating atoms in these substituent groups; the latter circumstance is in line with the lack of tin bonding by the peptide carbonyl in

Table 4 Bond distances (Å) and angles (°) in Et₂SnGlyTyr

Sn(1)-N(1)	2.288(3)	C(6)-Sn(1)-C(8)	131.4(2)
Sn(1) - N(2)	2.077(3)	O(1)-Sn(1)-C(8)	94.1(1)
Sn(1)-O(1)	2.191(3)	O(1)-Sn(1)-C(6)	94.7(1)
Sn(1)-C(6)	2.104(4)	N(2)-Sn(1)-C(8)	112.8(1)
Sn(1) - C(8)	2.123(3)	N(2)-Sn(1)-C(6)	115.7(1)
N(1)-C(5)	1.446(6)	N(2)-Sn(1)-O(1)	75.9(1)
N(2)-C(2)	1.452(4)	N(1)-Sn(1)-C(8)	92.4(1)
N(2)-C(4)	1.335(4)	N(1)-Sn(1)-C(6)	101.1(2)
O(1)-C(1)	1.278(4)	N(1)-Sn(1)-O(1)	152.2(1)
O(2)-C(1)	1.236(4)	N(1)-Sn(1)-N(2)	76.6(1)
O(3)-C(4)	1.224(5)	Sn(1)-N(1)-C(5)	109.7(3)
O(4)-C(14)	1.361(5)	Sn(1)-N(2)-C(4)	121.3(2)
C(1)-C(2)	1.518(5)	Sn(1)-N(2)-C(2)	118.5(2)
C(2)-C(3)	1.558(5)	C(2)-N(2)-C(4)	119.6(3)
C(3)-C(11)	1.497(5)	Sn(1)-O(1)-C(1)	117.1(2)
C(4)-C(5)	1.505(6)	O(1)-C(1)-O(2)	123.0(3)
C(6)-C(7)	1.509(7)	O(2)-C(1)-C(2)	119.0(3)
C(8)-C(9)	1.504(5)	O(1)-C(1)-C(2)	118.0(3)
C(11)-C(12)	1.396(5)	N(2)-C(2)-C(1)	110.0(3)
C(11)-C(16)	1.374(5)	C(1)-C(2)-C(3)	110.4(3)
C(12)-C(13)	1.387(6)	N(2)-C(2)-C(3)	111.4(3)
C(13)-C(14)	1.369(5)	C(2)-C(3)-C(11)	114.6(3)
C(14)-C(15)	1.393(5)	N(2)-C(4)-O(3)	124.8(4)
C(15)-C(16)	1.378(6)	O(3)-C(4)-C(5)	120.4(4)
		N(2)-C(4)-C(5)	114.7(4)
		N(1)-C(5)-C(4)	116.4(4)
		Sn(1)-C(6)-C(7)	114.2(3)
		Sn(1)-C(8)-C(9)	116.3(2)
		C(3)-C(11)-C(16)	121.5(3)
		C(3)-C(11)-C(12)	121.6(3)
		C(12)-C(11)-C(16)	116.9(3)
		C(11)-C(12)-C(13)	122.2(3)
		C(12)-C(13)-C(14)	119.6(4)
		O(4)-C(14)-C(13)	121.9(4)
		C(13)-C(14)-C(15)	119.1(4)
		O(4)-C(14)-C(15)	119.0(4)
		C(14)-C(15)-C(16)	120.4(4)
		C(11)-C(16)-C(15)	121.8(3)

Table 5 ¹³C and ¹¹⁹Sn NMR spectral data for diethyltin derivatives of dipeptides Et₂SnL in CD₃OD

Compound	a (ppm)	b (ppm)	c(d') (ppm)	d (ppm)	e (ppm)	f (ppm)	g (ppm)		Angle C-Sn-C ^a (°)	$\delta(^{119}Sn)$ (ppm)
1 R' = R" = H	44.69	47.21	_	_	177.75 174.26	14.07	9.61 9.69	632.84	132.4	-128.06
2 R' = H, R'' = Me	44.80	53.27		19.64	174.04 181.18	13.38 13.44	9.87 9.66	623.04	131.4	-126.24
3 R' = R'' = Me	52.17	53.34	19.69	19.48	175.74 179.06	9.89 9.69	12.89 12.76	605.00	129.8	n.m. ^c
$4 R' = H, R'' = CH(Me)_2$ (Me: d')	44.79	62.27	18.55 (20.03)	33.49	173.80 178.78	12.05 13.34	9.69 9.80	607.80	130.2	-126.17
$5^{b}R' = R'' = CH(Me)_{2}$ (Me: h)	61.45	62.44	15.67	18.65	177.30 181.41	9.94 9.69	11.83 13.02	n.o. ^c		n.m. ^c
$6^{b} R' = H$ $R'' = CH_{2} - CH_{2} - S - Me$ i	44.59	59.69	_	33.44	174.08 179.65	12.71 13.66	9.65 9.87	612.32	130.5	-123.44
$7^{b} R' = H$ $R'' = \underset{d}{CH_2} \longrightarrow \underset{h k}{OH}$	44.63	58.85	*****	36.31	173.77 174.08	12.33 12.38	9.60 9.69	616.32	130.9	-122.21

^aFrom |¹J(¹¹⁹Sn, ¹³C)|, according to Ref. 25. See text.

Table 6 119Sn Mössbauer parameters of diethyltin derivatives of dipeptides Et₂SnL^a

Co	ompound	$\frac{\delta^b}{(\text{mm s}^{-1})}$	ΔE^{c} (mm s ⁻¹)	$\frac{\Gamma_1^{\ d}}{(mm\ s^{-1})}$	Γ_2^{d} (mm s ⁻¹)
1	Et ₂ SnGlyGly	1.18	2.69	0.88	0.88
	(in CH ₃ OH)	1.33e	3.49^{e}	0.87^{e}	0.84^{e}
2	Et ₂ SnGlyAla	1.32	3.14	0.87	0.86
3	Et ₂ SnAlaAla	1.29	2.96	0.93	0.83
4	Et ₂ SnGlyVal	1.17	2.46	0.85	0.84
5	Et ₂ SnValVal	1.19	2.54	0.86	0.87
6	Et ₂ SnGlyMet	1.20	2.58	0.88	0.85
7	Et ₂ SnGlyTyr	1.26	2.87	0.83	0.80

^aIn the solid state, unless otherwise stated. T = 77 K. Absorber thickness 0.51-0.55 mg ¹¹⁹Sn cm⁻². ^bIsomer shift with respect to room-temperature Ca¹¹⁹SnO₃. ^cNuclear quadrupole splitting. ^dFull width at half height of the resonant peaks, at lower and higher velocity than the spectrum centroid, respectively. ^c1 cm³ of Et₂SnGlyGly solution (0.13 mol dm⁻³) in CH₃OH, frozen by immersion in liquid nitrogen. ¹¹

Et₂SnGlyTyr as shown by X-ray diffractometry, as well as with the present vibrational investigations.

In methanol solution, the point-charge model C-Sn-C angle of Et₂SnGlyGly increases to 141.7°, as estimated from $\Delta E_{\rm exp}$ (Table 6), being now of the same order as the data obtained from $|{}^{1}J({}^{119}{\rm Sn},{}^{13}{\rm C})|$ in CD₃OD (Table 5). Unexpectedly, Et₂SnGlyGly behaves in quite a different way compared with Me₂SnGlyGly.³

In conclusion, we think that the present investigation establishes the occurrence of trigonal bipyramidal structures for the Et₂Sn-dipeptide complexes investigated here. Monomeric species occur, in both solid-state and methanol solutions, where terminal carboxylate groups of the dipeptides act as monodentate axial ligands; the C-Sn-C angles of the Et₂Sn moieties are generally larger in the solution phase compared to the solid-state species.

^bAdditional data, chemical shift values (ppm) for C atoms: **5**, h: 19.65, 19.90; **6**, h: 30.75, i: 15.33; **7**, h: 128.81, i: 157.42, k: 116.16, 132.04.

cn.m. = not measured; n.o. = not observed

Acknowledgements The financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Ministero per l'Università e la Ricerca Scientifica, the Consiglio Nazionale delle Ricerche, Progetto Chimica Fine e Secondaria II, and a gift of chemicals from Degussa, Frankfurt, are gratefully acknowledged.

REFERENCES

- Barbieri, R, Pellerito, L, Ruisi, G, Lo Giudice, M T, Huber, F and Atassi, G Inorg. Chim. Acta, 1982, 66: L39
- Huber, F and Barbieri, R Tin as a Vital Nutrient: Implications in Cancer Prophylaxis and other Physiological Processes, Cardarelli, N F (ed), CRC Press, Boca Raton, 1986, pp 175–187
- Ruisi, G, Silvestri, A, Lo Giudice, M T, Barbieri, R, Atassi, G, Huber, F, Grätz, K and Lamartina, L J. Inorg. Biochem., 1985, 25: 229
- 4. Huber, F, Haupt, H-J, Preut, H, Barbieri, R and Lo Giudice, M T Z. Anorg. Allg. Chem., 1977, 432: 51
- Preut, H, Mundus, B, Huber, F and Barbieri, R Acta Cryst., 1986, C42: 536
- Preut, H, Mundus, B, Huber, F and Barbieri, R Acta Cryst., 1989, C45: 728
- 7. Mundus-Glowacki, B, Huber, F, Preut, H, Ruisi, G and Barbieri, R Applied Organomet, Chem., 1992, 6: 83
- Preut, H. Vornefeld, M and Huber, F Acta Cryst., 1991, C47: 264
- Crowe, A J, Smith, P J and Atassi, G *Inorg. Chim. Acta*, 1984, 93: 179
- Sherman, L R and Huber, F Appl. Organomet. Chem., 1988, 2: 65
- Barbieri, R and Musmeci, M T J. Inorg. Biochem., 1988, 32: 89
- International Tables for X-ray crystallography vol IV, Ibers, J A and Hamilton, W C (eds), Kynoch Press, Birmingham, UK, 1974, Tables 2.2B and 2.3.1
- 13. Rogers, D Acta Cryst., 1981, A37: 734
- 14. Frenz, B A Enraf-Nonius Structure Determination

- Package (SDP-PLUS), version 3.0, Enraf-Nonius, Delft, The Netherlands, 1985
- 15. Nardelli, M Comput. Chem., 1983, 7: 95
- Sheldrick, G M SHELXTL PLUS (Release 2) for Nicolet R3m/V Crystallographic System. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. University of Göttingen, Germany, 1987
- 17. Williams, D E PCK83, Quantum Chem. Program Exchange Proram No. 481, 1984
- Deacon, G B and Phillips, R J Coord. Chem. Rev., 1980,
 227; Deacon, G B, Huber, F and Phillips, R J Inorg. Chim. Acta, 1985, 104: 51
- Grenie, Y and Garrigou-Lagrange, C J. Mol. Spectrosc., 1972, 41: 536
- Ho, B Y K and Zuckerman, J J Inorg. Chem., 1973, 12: 1552
- 21. Bondi, A.J. Phys. Chem., 1964, 68: 441
- Holmes, J R and Kaesz, H D J. Am. Chem. Soc., 1961, 83: 3903
- Otera, J, Hinoishi, T, Kawabe, Y and Okawara, R Chem. Lett., 1981, 273
- Domazetis, G, Magee, R J and James, B D J. Organomet. Chem., 1978, 148: 339
- 25. Holecek, J, Nadvornik, M, Handlir, K and Lycka, A J. Organomet. Chem., 1986, 315: 299
- Lockhart, T P and Manders, W F *Inorg. Chem.*, 1986, 25:
- Lockhart, T P and Manders, W F J. Am. Chem. Soc., 1987, 109: 7015
- 28. Bancroft, G M and Platt, R H Adv. Inorg. Chem. Radiochem., 1972, 15: 59
- 29. Clark, M G, Maddock, A G and Platt, R H J. Chem. Soc., Dalton Trans., 1972: 281
- Bancroft, G M, Kumar Das, V G, Sham, T K and Clark, M G J. Chem. Soc., Dalton Trans., 1976: 643
- Pellerito, L, Lo Giudice, M T, Ruisi, G, Bertazzi, N, Barbieri, R and Huber, F *Inorg. Chim. Acta*, 1976, 17: L21
- 32. Barbieri, R, Pellerito, L and Huber, F *Inorg. Chim. Acta*, 1978, 30: L321
- 33. Barbieri, R, Silvestri, A, Huber, F and Hager, C D Canad. J. Spectrosc., 1981, 26: 194